Tài liệu xem thêm Đề thi môn toán thù thời thượng A1 kèm những phương pháp giải khác nhau, gửi mang lại chúng ta độc giả tham khảo rất có thể củng vắt kiến thức và kỹ năng với nâng cao tài năng học tập tân oán thời thượng. Chúc các bạn học tập giỏi nhé




Bạn đang xem: Đề thi toán cao cấp 1 có đáp án

*

ĐỀ SỐ 3 2 Giải pmùi hương trình y − y = x 2e x . "Câu I. x Đây là pt vi phân tuyến tính cung cấp 1 − p ( x ) dx  dx + C ⇒ y=e ∫ q ( x )e ∫ p ( x ) dx ∫     ∫ x dx  2 x ∫ − x dx  2 2 ∫ y=e dx + C  xee   < > = e 2 ln x ∫ x 2 e x e −2 ln x dx + C = x 2 .e x + C Giải hệ pt bằng cách thức TR, VTR hoặc khửCâu II. x"1 (t ) = 5 x1 − 3 x2 + e 2 t (1)  x" 2 (t ) = −x1 + 3 x2 ( 2) Lấy pt (1) + pt (2) x "1 + x 2 = 4 x1 + e 2t (*) " Đạo hàm 2 vế pt (2) ta được: x1 = 3 x2 − x2 " " " Tgiỏi vào pt (*) 3 x 2 − x 2 + x 2 = 4( 3x 2 − x 2 ) + e 2t " " " " ⇔ − x2 + 8 x2 − 12 x2 = e 2t " " 1 ⇒ x2 = C1e 6t + C 2 e 2t + xe cộ 2t 2 Ttuyệt vào pt (2) ta được: 7 2t x1 = C1e 6t + C 2 e 2t + e t + xe pháo 2 1 + tan x − 1 − tan x Tính giới hạn limCâu III. . x x →0 1 + rã x − 1 − rã x lyên ổn x x →0 1 + tan x − 1 − tan x 1 + chảy x − 1 + tan x 2 tung x = lim = llặng = lyên =1 ( ) x →0 x 1 + rã x + 1 − tung x x x.2 x →0 x →0 −1 / 4 dx Tính tích phân I = ∫Câu IV. . −1/ 2 x 2 x + 1 Đặ t t = 2x + 1 ⇒ t 2 = 2x + 1 ⇔ tdt = dx −1 −1 x 2 4 t 0 1 2 1 1 1 1 < (t + 1) − (t − 1)> dt 2 2 2 2 tdt 2dt 2dt ∫ ∫ ∫ ∫ ⇒I= = = = (t − 1)(t + 1) (t − 1)(t + 1) t 2 −1 t 2 −1 .t 0 0 0 0 2 1 1− 1 ∫ ( ln t −1 −ln t +1) 1 2 2 2 = = ln 1 1+ 0 0 2 +∞ dx Tính tích phân suy rộng lớn I = ∫Câu V. . x ln 2 x 2 +∞ 1 +∞ d (ln x) 1 1 1 =− ∫ ln 2 x − llặng = = = ln 2 x→+∞ ln x ln 2 ln x 2 2 Khảo tiếp giáp cùng vẽ đồ dùng thị hàm số y = ln x − x + 1 .Câu VI. Tập xd: x>0 lim ( ln x − x + 1) = −∞ x →0 + => tiệm cận đứng x=0 lim ( ln x − x + 1) = −∞ x → +∞ => không có tiệm cận ngang 1− x 1 y" = − 1 = x x ⇒ y" = 0 ⇔ x = 1 Bảng trở thành thên: x 0 1 +∞ y’ + ─ y 0 -∞ -∞ 1 y" = − đồ gia dụng thị không có điểm uốn nắn x2 Bảng giá chỉ trị: x 0.5 2 y 11 ln + ln 2 − 1 22Đồ thị: x2 1Câu VII. Tính diện tích S miền phẳng giới hạn vì y = ; y = . 1 + x2 2 x2 1 = Pt hoành độ giao điểm: 2 1+ x2 ⇔ x4 + x2 − 2 = 0 ⇔ x = ±1 Diện tích miền phẳng: 1 x2 1 SD = ∫ − dx 1+ x2 2 −1 1 x2 cùng y = Vì y = ko cắt nhau trong tầm (-1;1) nên: 1+ x2 2 1   3 x 1 x π1 1 2  arctan( x) −  ∫1 1 + x 2 − 2 dx = SD = = −     23 6 −    −1 ĐỀ SỐ 5 y + x sin x với điều kiện y( π )= 2 π . Giải phương thơm trìnhCâu I. y’ = x Đây là pt vi phân đường tính cung cấp 1: − p ( x ) dx  dx + C  ⇒ y=e ∫ q ( x )e ∫ p ( x ) dx ∫     ∫ x dx   1 1 ∫ − x dx ∫ ( x sin x ) e y=e dx + C      1 y = e ln x  ∫ x sin x. dx + C    x y = x.(− cos x ) + C = − x cos x + C Ta có: y (π ) = 2π ⇔ −2π + C = 2π ⇔ C = 4π Vậy nghiệm của pt là: y = − x cos x + 4π Giải hệ pt bởi phương thức TR, VTR hoặc khửCâu II.  x1" (t ) = 3 x1 + 2 x2 + et "  x2 (t ) = x1 + 2 x2 + 3t "  x1 (t ) = 3 x1 + 2 x 2 + e (1) t "  x 2 (t ) = x1 + 2 x 2 + 3t (2)   et  3 2 F =  A=  1 2  3t     Pmùi hương trình sệt trưng: A − λI = 0 3−λ 2 ⇔ =0 2−λ 1 ⇔ (3 − λ )(2 − λ ) − 2 = 0 ⇔ λ2 − 5λ + 4 = 0 λ = 1 ⇔ λ = 4  2 2  x1   1 1  x  = 0  E1:     2   − 1 ⇒ E1 =   1   2 E4 =   1   −1 2 −1  1 − 2 1  −1 2 P −1 = P=  1 1  =    3 −1 −1 3  1 1       1 0 D= 0 4    Đặt Y = P-1X ⇒ Y " = DY + Phường −1 F  y1"   1 0  y1  1  − 1 2  e t   " =    y   0 4  y  + 3  1    1  3t   2   2     " 1t  y1 = y1 − 3 e + 2t  ⇔ t y" = 4y + e + t 2 2  3  dt    e t  −dt y1 = e ∫  ∫  2t − e ∫ dt + C1    3     ⇒ 4 dt   e   −4 dt t  y 2 = e ∫  ∫  + t e ∫ dt + C 2      3     t   2t  1  y1 = e  ∫  t − dt + C1    e 3     y = e 4t   e + t dt + C  − 3t ∫   2  e 3t  2 3     t  t −t −t  y1 = e  − 2te − 2e − 3 + C1       y = e 4t  − te − 2e + C  − 3t − 3t  2 3  2 9    Vậy nghiệm của pt là X=PY 1 Tính L = llặng e − (1 + x ) . xCâu III. x x →0 1 1 ln(1+ x ) e − (1 + x) e−e x xlim = lyên x x x →0 x →0 x 1  x2 2 1 1− 2 x  x− +o ( x )  e 1− x  2 e−e e−e   e 2 2= lyên = lim == lyên = x x 1 2 x →0 x →0 x →0 2 dx Tính tích phân I = ∫Câu IV. . x 3x 2 − 2 x − 1 1 −1 1 1 Đặ t t = ⇒ x = ⇔ dx = 2 dt x t t x 1 2 y 1 1 2 −1 1 t. dt 1 1 2 dt dt t2 I =∫ =∫ =∫ t − t 2 − 2t + 3 1 2 − ( t + 1) 1 32 2 2 1 − −1 2 1 t 2 t2 t 1 t +1 π 1 = arcsin = − arcsin 2 4 2 1 2 ∞ e x dx ∫ x phân kì. Tính Chứng minch rằng tích phân suy rộngCâu V. 1 x et dt ∫t.J = lim 1 x e x →∞ ex 1 > >0 ∀x > 1 Ta có: x x ∞ ∞x dx e dx Mà ∫ phân kì cần ∫ phân kì theo tiêu chuẩn chỉnh so sánh 1 x x 1 1 x et ex ∫ t dt = lyên xx = 0 J = lim 1 ex x →∞ e x →∞ 2 Khảo gần kề và vẽ đồ gia dụng thị hàm số y = e 4 x − x .Câu VI. TXĐ: R 2 y " = (−2 x + 4)e 4 x− x ⇒ y" = 0 ⇔ x = 2 = 0 4 x− x2 llặng e  x → +∞  => tiệm cận ngang là y=0 4 x− x2 lim e = 0  x →−∞ Tiệm cận xiên: 2 2 e 4 x− x ( −2 x + 4) e 4 x − x f ( x) llặng = lyên = lyên =∞ x x 1 x→∞ x →∞ x→∞ => không tồn tại tiệm cận xiên Bảng phát triển thành thiên: x -∞ 2 +∞ y + 0 ─ y’ 4 e 0 0 Bảng giá bán trị: x 1 3 e3 e3 y Tính diện tích miền phẳng giới hạn vị y = 3 x 2 ; y = 4 − x 2 .Câu VII. Pmùi hương trình hoành độ giao điểm: 3x 2 = 4 − x 2 ⇔ 3x 4 = 4 − x 2 ⇔ x = ±1 Diện tích miền phẳng đề xuất tìm: 1 ∫ SD = 4 − x 2 − 3 x 2 dx −1 Vì y = 3 x 2 và y = 4 − x 2 không cắt nhau trong khoảng (-1;1) phải ta có: 1 33 1 1 x ∫ ∫ SD = 4 − x 2 − 3 x 2 dx = 4 − x 2 dx − 3 −1 −1 −1 1 23 ∫ = 4 − x 2 dx − 3 −1 1 ∫ J= 4 − x 2 dx −1 Đặt x = 2sint ⇒ dx = 2 cos tdt π π ∫π ( 2 + 2 cos 2t ) dt = ( 2t +sin 2t ) 2π sin 1 6 ∫ 4 cos J= tdt = = +3 2 6 −π 3 sin −1 6 − 6 2π 3 Vậy S D = + 3 3 ĐỀ SỐ 7 Giải phương trìnhCâu I. y a/ y’= +3xex x Đây là pt tuyến đường tính cấp cho 1: ∫ dx   −1 1 ∫ dx ⇒ y = e x  ∫ 3 xe x e x dx + C      1 ⇔ y = x  ∫ 3 xe cộ x dx + C    x ⇔ y = x3e + C x b/(3x2+y3+4x)dx+3xy2dy=0. ∂Q ∂Phường = = 3y 2 Ta có: ∂x ∂y Đây là pt vi phân toàn phần:  nghiệm bao quát u(x,y) = C x x 3 3 2 x + y x +2x  u ( x, y ) = ∫ (3 x + y + 4 x)dx = = x3 + y 3 x + 2x 2 2 3 0 0 Giải hệ pt bởi phương pháp TR, VTR hoặc khửCâu II.  x1" (t ) = 4 x1 − 3 x2 + t 2 + t (1)  "  x2 (t ) = 2 x1 − x2 + e 3t (2)   4 −3  t2 + t  A= F =  3t    2 −1  e  Pt đặc trưng: A − λI = 0 4−λ −3 ⇔ =0 −1 − λ 2 ⇔ ( 4 − λ ) ( −1 − λ ) + 6 = 0 ⇔ λ 2 − 3λ + 2 = 0 λ = 2 ⇔ λ = 1  3 −3   x1    = 0 E1:   2 −2   x2  1 ⇒ E1 =   1  2 −3   x1    = 0 E2:   2 −3   x2   3 ⇔ E2 =    2  2 −3   −2 3  1 3  −1 P=  ⇒ P. = − =   −1 1   1 −1  1 2  1 0 D=  0 2 Đặt Y = P-1X => Y’=DY + P-1F  y1"   1 0   y1   −2 3   t 2 + t   " =   +    3t   y2   0 2   y2   1 −1  e   y1" = y1 − 2(t 2 + t ) + 3e3t  "  y 2 = y2 + t + t − e 2 3t   y1 = et  3e3t − 2(t 2 + t )  e −t dt + C1  ∫       y2 = et  ∫ t 2 + t − e3t  e −t dt + C2      Nghiệm là X=PY 1/ x  (1 + 4 x)1 / x  Tính số lượng giới hạn lyên ổn Câu III. .  e4 x − >0   1   1 x  ( 1 + 4x) 1  1 llặng ln ( 1+ 4 x ) x − ln e 4  x  =e x→0 x  lyên ổn  e4   x →0     1 1   2 1 ( ) () Mũ = lyên   4 x − 16 x  + o x − 4  2   x →0 x x 2  1 = lyên ( −8 x + 0 ( x ) ) = −8 x →0 x 0 dx Tính tích phân I = ∫Câu IV. . 3 −2 ( x + 1) x + 1 Đặ t t = 3 x + 1 ⇒ t 3 = x + 1 ⇒ 3t 2 dt = dx x 0 -2 t 1 -1 1 3 1 2 3t dt =− ∫ I= = −6 3 −1 t .t t −1 ∞ x2 − 3 ∫ x( x + 1)( x 2 + 1) . Tính tích phân suy rộng lớn sauCâu V. 1 x2 − 3 Cx + D −3 2x + 2 A B 1 =+ +2 = + +2 x( x + 1)( x + 1) x x + 1 x + 1 x x +1 x +1 2 +∞ +∞ x2 − 3  −3 2x + 2  1 ∫ ) ∫ I= = + +2 dx ( x ( x + 1) x 2 + 1 x x +1 x +1   1 1 ( x ) +ln( x +1)  +∞ +∞  2x 2 =  −3ln ∫x + + 2  dx   +1 x +1  2  1 1 +∞ x +1 ( x +1) +2arcchảy x  +∞ +  ln 2 = ln   x3 1 1 ( ) +∞  ( x +1) x +1 2 =  ln + 2arctung x  3   x   1 π 3π = − ln 4 + π − = − ln 4 4 4 Khảo tiếp giáp cùng vẽ đồ vật thị hàm số y =| x | 1 − x 2 .Câu VI. Tập xác định: -1 Ta có: y ( − x) = − x 1 − ( − x ) = y ( x ) 2 => y là hàm chẵn. => vật thị đối xứng qua Oy Xét 0 3 L = ∫ 1 + ( y ") 2 1 2 3 3 16 x 4 − 8 x 2 + 1  1 = ∫ 1+  x −  = ∫ 1+ 16 x 2 4x   1 1 3 3 16 x 4 + 8 x 2 + 1 4x2 + 1 =∫ =∫ dx 16 x 2 4x 1 1 3  x2 1  3 3 4x +1 2  1 1 + ln x  =∫ dx = ∫  x +  dx =  = 4 + ln 3 4x 4x  4  24   1 1 1 ĐỀ SỐ 9 Giải các pmùi hương trìnhCâu I. y3 dx − x 2 dy = 0 , y(4)=2 a/ 2 Chia 2 vế mang lại y3x2 ta được: dx dy − =0 2 x2 y3 dx dy ⇔ 2= 3 2x y Tích phân 2 vế ta được: dx dy ∫ 2 x2 = ∫ y3 −1 1 ⇔ + 2 = C ⇔ 3y2 − 2x = C 2x 3y Theo đề bài bác ta có: 3.4-2.2=C ⇔ C=8 Vậy nghiệm của pt là: 3 y 2 − 2 x − 8 = 0 4y b/ y "− = x 4 cos x . x Đây là pt vi phân tuyến đường tính cấp 1: ∫ dx   −4 4 ∫ dx y = e x  ∫ x 4 cos x.e x dx + C    ( ∫ cos xdx + C ) = x4 = x 4 .sin x + Cx 4 Giải phương thơm trình vi phân: y’’+2y’-3y= (6x + 1)e3xCâu II. Phương thơm trình sệt trưng: k = 1 k 2 + 2k − 3 = 0 ⇔   k = −3 ⇒ y0 = C1e x + C2 e −3 x yr = x s eα x .Qn ( x) Vì α = 3 không là nghiệm của pt nên s = 0 ⇒ yr = e3 x ( Ax + B ) yr" = 3e3 x ( Ax + B ) + Ae3 x yr = 9e3 x ( Ax + B ) + 6 Ae3 x " Thế vào pt ta được: 9e3 x ( Ax + B ) + 6 Ae3 x + 2 3e3 x ( Ax + B ) + Ae3 x  − 3e3 x ( Ax + B ) = ( 6 x + 1) e3 x    1 A = 2 ⇒  B = −1   2 Vậy nghiệm của pt là: y = y0 + yr 1 1 ⇔ y = C1e x + C2 e3 x + e3 x  x −  2 2 ( x + 1) x +1.( x + 2) x + 2 .( x + 4) x + 4 Tính số lượng giới hạn limCâu III . ( x + 5)3 x +7 x →+∞  x + 1  x +1  x + 2  x + 2  x + 4  x + 4  = lyên    .  .  x+5  x+5   x+5   x →∞      x + 5− 4 x + 5 −3 x + 5 −1 4  3  1 = lyên ổn  1 − 1 − 1 −     x+5 x+5 x+5    x →∞     1  x +5 x +5 x +5 4  3   1 −  1 −  1 −  x+5  x+5  x+5   = lim  x →∞  1  4 3  4  3 1 − 1− 1−      x+5  x+5  x+5  = e −4 e −3e −1 = e −8 2 dx Tính tích phân: I = ∫Câu IV. ( x − 1) ( 2 − x ) 1 x = cos 2 t + 2sin 2 t ⇒ dx = ( −2sin t cos t + 4 cos t sin t ) dt = ( sin 2t ) dt π π π 2 2 sin 2tdx = ∫ 2dx = 2 x I=∫ =π 2 ( )( ) sin 2 t cos 2 t 0 0 0 ∞ 1 ∫ Tính tích phân suy rộng I = dx .Câu V. x ⋅ 4 x2 + 1 80 Đặ t t = 4 x 2 + 1 ⇒ t 4 = x 2 + 1 ⇔ 2 xdx = 4t 3 dt +∞ +∞ +∞ 2t 3 dt 2t 2 dt 1 1 I=∫ 4 =∫ 2 =∫  2 +2  dx ( ) ( )( ) t −1 t +1  3 t −1 t 3 t −1 t + 1 2 3 +∞ 1 +∞ dt + arctan t ∫ ( t − 1) ( t + 1) = 3 3 +∞ π 1 1 1 ∫  t −1 t +1  2 = −  dt + − arctan 3  2 3 +∞ 1   t −1   π ln   = + − arcrã 3 2   t +1   2   3 11π = ln + − arctung 3 222 Khảo tiếp giáp với vẽ trang bị thị hàm số y = 3 1 − x3 .Câu VI. TXĐ: R −2 1 y " = −3 x 2 ( 1 − x 3 ) 3 3 ⇒ y"≤ 0 lim 3 1 − x 3 = −∞   x →+∞  ⇒ không tồn tại tiệm cận ngang llặng 3 1 − x 3 = +∞   x →−∞ Tiệm cận xiên: 1 − x3 3 f a = lim = lim = −1 x →∞ x x x →∞ ) ( b = lyên ( f + x ) = lim 1 − x3 + x 3 x →∞ x →∞ 1 = lim ( 1− x ) x →∞ 32 − x 3 1 − x3 + x 2 3 1 = =0   21 1 x  3 1 − 3 + 6 − 3 3 − 1 + 1 2 x x x   Vậy tiệm cận xiên là y = -x Bảng biến thiên: -∞ +∞ x y’ ─ +∞ y -∞ Bảng giá chỉ trị: x -1 0 1 2 y −7 1 0 3 3 2 Tính độ dài cung y = ln x, 2 2 ≤ x ≤ 2 6 .Câu VII. 1 1 + ( y ") = 1 + 2 2 x ) Độ dài cung C : 26 26 x2 + 1 1 ∫ dx = ∫ L= 1+ x2 x2 22 22 Đặ t t = x 2 + 1 ⇒ t 2 = x 2 + 1 ⇔ tdt = xdt 5 5 t 2 dt  1 L=∫ 2 = ∫ 1 + 2  dt t −1 3  t −1  3 5  1 t −1  5  1 1 1   dt =  t + ln = ∫ 1 +   −  2 t +1  2  t −1 t +1   3 3 1211 14 = 2 + ln − ln = 2 + ln 2322 23 ĐỀ SỐ 19. Giải phương thơm trình y − y tung x + y 2 cos x = 0 . "Câu I. Chia 2 vế mang đến y2 pt trsinh sống thành: y " chảy x − = − cos 2 x (*) y2 y Đây là pt Bernouli −1 1 Đặ t u = ⇒ u " = 2 y " y y Thế vào pt (*) : u "− u chảy x = cos x (pt vi phân tuyến tính) tan xdx  ∫ − tung xdx dx + C  ⇒ u = e∫ ∫ cos x.e     J = ∫ tung xdx Đặt t = cosx ⇒ dt = − sin xdx −dt ⇒J =∫ = − ln t = − ln cos x t ( ) ⇒ u = − cos x cos 2 xdx + C   1 − cos 2 x   = − cos x  ∫   dx + C    2  1  1 = − cos x  x − sin 2 x + C  2  4 1  1 1 Vậy nghiệm của pt là: = − cos x  x − sin 2 x + C  2  y 4 Giải hệ pt bằng phương thức TR, VTR hoặc khửCâu II.  x1" (t ) = 7 x1 − x2 + 2e5t (1)   x " (t ) = 2 x + 4 x + 3e −6t (2) . 2 1 2  Lấy 4 lần pt (1) + pt (2) ta được: 4 x1" + x2 = 30 x1 + 8e5t + 3e −6t " (*) Đạo hàm pt (1) ta được: x1 = 7 x1" − x2 + 10e5t " " Thế vào pt (*) ta có: 4 x1" + 7 x1" − x1 + 10e5t = 30 x1 + 8e5t + 3e −6t " x1 − 11x1" + 30 x1 = 2e5t − 3e −6t " e −6t x1 = C1e5t + C2 e6t − 2 xe5t − 44 13 −6t ⇒ x2 = 2C1e5t + C2 e −6t − 4 xe5t − e + 4e5t 44  1 1 Tính giới hạn I = lyên  − 2 .Câu III. x →0  x arctung x x x − arctan x I = lim x →0 x 2 arctung x  x3  x3 x −  x −  + o( x 3 ) 3 1  = llặng 33 = = lyên 3 x x →0 x 3 x →0 3− x + 4 x +∞ Tìm α nhằm tích phân I = ∫ dx hội tụ. (5+ x )Câu IV. α α −1 4 Xét α > 0 : Lúc x → +∞ 4x 4 = α 2 −α −1 f: () α −1 xα x ⇔ α 2 − α −1 > 1 Tích phân hội tụ ⇔ α 2 So cùng với dk ta được α > 2 Xét α 2 x 4 dx 1 Tính tích phân I = ∫Câu V. . 2 2 −1 (1 + x ) 1− x x 4dx 1 I = 2∫ x2 ) 1 − x2 0 (1 + Đặt x = sin t ⇒ dx = cos tdt π sin 4 t cos tdt 2 I = 2∫ ( ) 0 1 + sin t cos t 2 π π sin 4 t − 1 2 2 1 = 2∫ dt + 2 ∫ dt ( ) ( ) 0 1 + sin t 0 1 + sin t 2 2 π π 2 2 1 ( ) = 2 ∫ sin 2 t − 1 dt + 2 ∫ dt sin t + 1 2 0 0 = J +K π π π 1  2 π 2 2 J = 2 ∫ − cos 2 tdt = − ∫ ( cos 2t + 1) dt = − sin 2t +t  =−  2 2  0 0 0 π π 2 2 1 1 K=∫ dt = ∫ dt sin t + 1 0  sin t 1 2 2 2 + 0 cos t  2 2  cos t cos t  1 u = rã t ⇒ du = dt cos 2 t +∞ +∞ du 1 du K=∫ 2 =∫ ( ) 2 0 u2 + 1 0 u + u +1 Đặ t 2 +∞ ( ) 2 2π arcchảy 2u = = 22 2 0 π ( ) I = J + 2K = 2 −1 2 x2 + x - 1 1 .= x − 1 + Khảo tiếp giáp và vẽ đồ thị hàm số y =Câu VI. x+2 x+ 2 Tập xác định: x ≠ −2 x2 + 4 x + 3 1y " = 1− = ( x + 2) ( x + 2) 2 2y"= 0  x = −1⇔  x = −3 x2 + x −1 = −∞llặng x+2x →−2=> tiệm cận đứng là x = - 2 1 =0limx →∞ x + 2=> tiệm cận xiên là y = x - 1Bảng vươn lên là thiên: −∞ +∞ x -3 -2 -1 y’ + 0 ─ ─ 0 + +∞ +∞ y -5 (CT) −∞ −∞ (CĐ) -1Bảng giá chỉ trị: −5 −3 x -4 0 2 2 −11 −11 −1 −1 y 2 2 2 2 Tính diện tích S mặt phẳng tròn xoay chế tạo của vật thể tròn luân phiên tạo nên khiCâu VII.

Xem thêm: Tâm Đối Xứng Của Đồ Thị Hàm Số, Tìm Tọa Độ Y = X^3 +3X^2

cù miền phẳng giới hạn vày y = x 2 + 1;0 ≤ x ≤ 1/ 4; y = 0 quanh trục Ox. x y"= 1 + x2 Diện tích đề nghị tìm là: 1 2 x 4 SOx = 2π ∫ 1 + x 1+  2  dx 1 + x2   0 1 x2 4 = 2π ∫ 1 + x 1+ 2 dx 1 + x2 0 1 4 = 2π ∫ 1 + 2 x 2 dx 0 Đặ t t − 2 x = 2 x 2 + 1 ⇒ t 2 − 2 2 xt + 2 x 2 = 2 x 2 + 1 t 2 −1 ⇔ =x 2 2t ( ) ( ) 2t 2 2t − 2 2 t 2 − 1 ⇔ dx = dt 2 8t 2 2t 2 + 2 2 ⇔ dx = dt 8t 2  t 2 − 1  2 2t 2 + 2 2 2 SOx = 2π ∫  t − 2 dt  8t 2 2 2t  1  t 2 + 1  2 2t 2 + 2 2 2 ∫  2t  8t 2 = 2π dt 1  2 2 2t 4 + 4 2t 2 + 2 2 ∫ = 2π dt 16t 3 1 2  1 2 2 ∫ t + t + t π = dt 3 4   1 2 2 t 1 2 + 2ln t − 4 2  π = 2t 2   1 2 1 1 1 2 3 π  1 + 2 ln 2 − − +  = π  ln 2 +  = 4 2 4 2 4  4