Một số bất đẳng thức đã được chứng minch thường sử dụng để để giải những bài xích tập BĐT cơ bản cùng cải thiện vào chương trình Tân oán trung học cơ sở.

Bạn đang xem: Các bất đẳng thức nâng cao

Bất đẳng thức vào chương trình Toán thù THCS lớp (6, 7, 8, 9) là một dạng tân oán xuất xắc cùng khó. Các bài bác tập chứng minch BĐT thường là bài xích cuối cùng trong các đề thi để phân loại học sinh, bài xích toán thù chứng minc bất đẳng thức THCS thi học sinh giỏi cấp quận (huyện), tỉnh, thành phố.

Bất đẳng thức trung học cơ sở cơ bản với nâng cao

Các bất đẳng thức cấp 2 thường sử dụng là:

1. Bất đẳng thức AM-GM (Arithmetic Means – Geometric Means):

Với những bộ số

*
ko âm ta có:

*
a_1a_2…a_n" title="Rendered by QuickLaTeX.com" height="35" width="261" style="vertical-align: -12px;">

Ta gồm 3 dạng thường gặp của bđt này là.

Xem thêm: Giải Toán 10 Đại Số Bài 1 0 Bài 1: Hàm Số, Sgk Toán Lớp 10

Dạng 1:

*
a_1a_2…a_n" title="Rendered by QuickLaTeX.com" height="35" width="261" style="vertical-align: -12px;">

Dạng 2:

*
a_1a_2…a_n" title="Rendered by QuickLaTeX.com" height="18" width="270" style="vertical-align: -5px;">

Dạng 3:

*

Dấu “=” xảy ra Khi

*

Đối với BĐT này ta cần thành thạo kĩ thuật sử dụng bđt AM-GM đến 2 số cùng 3 số

2. Bất đẳng thức Cauchy-Schwarz (Bunyakovsky)

Dạng tổng quát: Cho là 2n số thực tùy ý khi đó

Dạng 1:

*
(1)

Dạng 2:

*
(2)

Dạng 3:

*
(3)

Dấu “=” xảy ra ở (1)(2)

*

Dấu “=” xảy ra ở (3)

*

Quy ước mẫu bằng 0 thì tử bằng 0

3. Bất đẳng thức Cauchy-Schwarz dạng Engel hay còn gọi là BĐT Schwarz

Cho là những số >0

Ta có:

*

Dấu “=” xảy ra khi

*

4. Bất đẳng thức Chebyshev (Trê- bư-sép)

Dạng tổng quát tháo Nếu

*

Hoặc

*

Dạng 1:

*

Dạng 2:

*

Nếu

*

hoặc

*

Dạng 1:

*

Dạng 2:

*

Bất đẳng thức Chebyshev không được sử dụng trực tiếp nhưng mà phải chứng minch lại bằng phương pháp xét hiệu

Bất đẳng thức Chebyshev mang đến hàng số sắp thứ tự, vày đó nếu những số chưa sắp thứ tự ta phải giả sử bao gồm quan liêu hệ thứ tự giữa những số.

5. Bất đẳng thức Bernoulli

Với

*
-1;rge 1vee rle 0Rightarrow (1+x)^rge 1+rx" title="Rendered by QuickLaTeX.com" height="19" width="328" style="vertical-align: -5px;">

Nếu

*
r>0" title="Rendered by QuickLaTeX.com" height="14" width="73" style="vertical-align: -2px;"> thì
*

Bất đẳng thức này còn có thể chứng minh bằng phương pháp quy nạp hoặc sử dụng BĐT AM-GM

6. Bất đẳng thức Netbitt

Ở đây mình chỉ nêu dạng thường dùng

Với x,y,z là những số thực >0

Bất đẳng thức Netbitt 3 biến:

*

Dấu “=” xảy ra Khi x=y=z>0

BĐT Netbitt 4 biến:

*

Dấu “=” xảy ra khi a=b=c=d>0

7. Bất đẳng thức vừa đủ cộng – trung bình điều hòa AM-HM (Arithmetic Means – Hamonic Means)

Nếu

*
là những số thực dương thì

*

Dấu “=” xảy ra lúc

*

8. Bất đẳng thức Schur

Dạng thường gặp

Cho a,b,c là những số ko âm

*

*
với r là số thực dương

Đẳng thức xảy ra Khi a=b=c hoặc a=0 và b=c với những hoán thù vị

9. Bất đẳng thức chứa dấu giá bán trị tuyệt đối

Với mọi số thực x,y ta có

*

Đẳng thức xảy ra lúc x,y thuộc dấu hay

*

Với mọi số thực x,y ta có

*

Dấu “=” xảy ra Lúc với chỉ khi

*

10. Bất đẳng thức Mincopxki

Với 2 bộ n số

*
*
thì :

Dạng 1:

*

Dạng 2: Cho x,y,z,a,b,c là các số dương ta có

*
a b c+sqrt<4>x y z leq sqrt<4>(a+x)(b+y)(c+z) sqrta c+sqrtb d leq sqrt(a+b)(c+d)" title="Rendered by QuickLaTeX.com" height="22" width="538" style="vertical-align: -6px;">