Muốn giải được bài tập đạo hàm tốt thì trước tiên bạn phải xem lại công thức đạo hàm đã được học ở bài trước. Dựa vào lý thuyết đó bạn sẽ dễ dàng luyện được kĩ năng giải bài tập đạo hàm hiệu quả.Bạn đang xem: Bài tập đạo hàm nâng cao có lời giải

Bài tập đạo hàm có lời giải
Bài tập 1: Hãy tính đạo hàm cơ bản sau $y = {x^3} – 3{x^2} + 2x + 1$
Giải
Sử dụng công thức đạo hàm ta có: $y’ = \left( { – {x^3} + 3x + 1} \right)’ = 3{x^2} – 6x + 2$
Bài tập 2: Cho hàm số có chứa căn như sau $y = \frac{{2x + 1}}{{x – 3}}$. Hãy tính đạo hàm
Giải
Vận dụng công thức đạo hàm của hàm hợp: $y’ = \frac{{(2x + 1)"(x – 3) – (x – 3)"(2x + 1)}}{{{{(x – 3)}^2}}} = \frac{{ – 7}}{{{{(x – 3)}^2}}}$
Bài tập 3: Cho một hàm số $f(x) = \sqrt {{x^2} – x + 1} + \sqrt {{x^2} + x + 1} $. Hãy tính đạo hàm
Giải
Sử dụng công thức đạo hàm của hàm hợp ta giải như sauTa có: $f"(x) = \frac{{2x – 1}}{{2\sqrt {{x^2} – x + 1} }} + \frac{{2x + 1}}{{2\sqrt {{x^2} + x + 1} }}$Suy ra $f"(x) = 0 \Leftrightarrow \left( {1 – 2x} \right)\sqrt {{x^2} + x + 1} = \left( {1 + 2x} \right)\sqrt {{x^2} – x + 1} $$\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l} (1 – 2x)(1 + 2x) \ge 0\\ {(1 – 2x)^2}\left = {\left( {1 + 2x} \right)^2}\left \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} – \frac{1}{2} \le x \le \frac{1}{2}\\ {(1 – 2x)^2} = {(1 + 2x)^2} \end{array} \right. \Leftrightarrow x = 0 \end{array}$
Bài tập 4: Cho hàm số $y = {\sin ^2}3x$. Hãy tính đạo hàm
Giải
Đây là hàm số lượng giác nên ta vận dụng công thức đạo hàm của hàm lượng giác suy ra
$y’ = 3\sin 6x$
Bài tập 5: Cho hàm số lượng giác $y = \sqrt {3{{\tan }^2}x + \cot 2x} $. Hãy vận dụng công thức đạo hàm lượng giác để tính đạo hàm
Giải
Vận dụng công thức đạo hàm lượng giác và hàm hợp:
Ta có: $y’ = \frac{{3\tan x(1 + {{\tan }^2}x) – (1 + {{\cot }^2}2x)}}{{\sqrt {3{{\tan }^2}x + \cot 2x} }}$
Bài tập đạo hàm phân theo dạng
Dạng 1: Tính đạo hàm bằng định nghĩa
Bài tập 1: Cho hàm số f(x) = x2 + 2x, có Δx là số gia của đối số tại x = 1, Δy là số gia tương ứng của hàm số. Khi đó Δy bằng:
A. (Δx)2 + 2Δx
B. (Δx)2 + 4Δx
C. (Δx)2 + 2Δx – 3
D. 3
Giải
Đáp án: B
Δy = f(1 + Δx) – f(1) = (1 + Δx)2 + 2(1 + Δx) – (1 + 2) = (Δx)2 + 4Δx
Đáp án B
Bài tập 2: Đạo hàm của các hàm số sau tại các điểm đã cho: f(x) = x2 + 1 tại x = 1?
A. 1/2
B. 1
C. 0
D. 2
Giải

Bài tập 3: Đạo hàm của các hàm số sau tại các điểm đã cho: f(x) = 2x3 + 1 tại x = 2?
A. 10
B. 24
C. 22
D. 42
Giải
Đáp án: B
Ta có

Vậy chọn đáp án là B
Dạng 2: Tính đạo hàm bằng công thức
Bài tập 4: Đạo hàm của hàm số y = (2x4 – 3x2 – 5x)(x2 – 7x) bằng biểu thức nào dưới đây?
A. (8x3 – 6x – 5)(2x – 7)
B. (8x3 – 6x – 5)(x2 – 7x) – (2x4 – 3x2 – 5x)(2x – 7)
C. (8x3 – 6x – 5)(x2 – 7x)+(2x4 – 3x2 – 5x)(2x – 7)
D. (8x3 – 6x – 5) + (2x – 7)
Giải
Đáp án: C
Áp dụng công thưc đạo hàm hàm hơp (uv)’= u’v + uv’ ta có:
y’ = (8x3 – 6x – 5)(x2 – 7x) + (2x4 – 3x2 – 5x)(2x – 7)
Chọn đáp án là C
Bài tập 5: Đạo hàm của hàm số f(t) = a3t4 – 2at2 + 3t – 5a bằng biểu thức nào sau đây?
A. 4a3t3 – 4at + 3
B. 3a2t4 – 2t2 – 5
C. 12a2t3 – 4at – 2
D. 4a3t3 – 4at – 5
Giải
Đáp án: A
f"(t) = 4a3t3 – 4at + 3
Chọn đáp án là A
Bài tập 6: Đạo hàm của hàm số f(x) = a3 – 3at2 – 5t3(với a là hằng số) bằng biểu thức nào sau đây?
A. 3a2 – 6at – 15t2
B. 3a2 – 3t2
C. -6at – 15t2
D. 3a2 – 3t2 – 6at – 15t2
Giải
Đáp án: C
f(t) = a3 – 3at2 – 5t3
f"(t) = -6at – 15t2
Chọn đáp án là C
Dạng 3: Tính đạo hàm của hàm số lượng giác
Bài tập 7: Đạo hàm của hàm số:


Bài tập 9: Đạo hàm của hàm số y = 6(sin4x + cos4x) – 4(sin6x + cos6x) bằng biểu thức nào sau đây?
A. 24(sin3x + cos3x) – 24(sin5x + cos5x)
B. 24(sin3x – cos3x) – 24(sin5x + cos5x)
C. 2
D. 0
Giải
Đáp án: D
y’= 6(sin2x + cos2x)2 – 12sin2xcos2x – 4(sin2x + cos2x)2 + 12sin2xcos2x(sin2x + cos2x) = 2
Dạng 4: Đạo hàm của hàm hợp
Bài tập 10.
Bạn đang xem: Bài tập đạo hàm lượng giác nâng cao
Tính đạo hàm của hàm số: y= ( 5x+ 2)10.
A . 10( 5x+2)9
B. 50( 5x+2)9
C. 5( 5x+2)9
D.(5x+2)9
Giải
Đạo hàm của hàm số đã cho là: y’=10.(5x+2)9.( 5x+2)’=50(5x+2)9
Chọn B.
Bài tập 11. Đạo hàm của hàm số y = f(x)= ( 1- 3x2,)5 là:
A. -30x.(1-3x2 )4
B. -10x.(1-3x2 )4
C. 30(1-3x2 )4
D. -3x.(1-3x2 )4
Giải
Đặt u (x)= 1- 3×2 suy ra u (x)=( 1-3x2 )’=(1)’-3(x2 )’= -6x
Với u= 1-3×2 thì y= u5 suy ra y‘ (u)=5.u4=5.(1-3x2)4
Áp dụng công thức đạo hàm của hàm hợp ta có :
y‘ (x)= 5.(1-3x2 )4.(-6x)= -30x.(1-3x2 )4
Chọn A.
Bài tập 12. Tính đạo hàm của hàm số : y= ( x3+ x2 -1)2 ( 2x+1)2
A. y’= ( x3+ x2-1)( 3x2+2x).(2x+1)2+(x3+ x2-1)2.( 8x+4)
B. y’= 2( x3+ x2-1)( 3x2+2x).(2x+1)2+(x3+ x2-1)2.( 8x+4)
C. y’= ( x3+ x2-1)( 3x2+2x).(2x+1)2+(x3+ x2-1)2.( 4x+4)
D. y’= 2( x3+ x2-1)( 3x2+2x).(2x+1)2-(x3+ x2-1)2.( 8x+4)
Giải
áp dụng công thức đạo hàm của của hàm hợp và đạo hàm của một tích ta có :
y’=2‘.(2x+1)2+(x3+ x2-1)2.’
Hay y’=2( x3+ x2-1)( x3+ x2-1)’.(2x+1)2+
(x3+ x2-1)2.2( 2x+1).(2x+1)’
⇔ y’= 2( x3+ x2-1)( 3x2+2x).(2x+1)2+(x3+ x2-1)2.2( 2x+1).2
⇔ y’= 2( x3+ x2-1)( 3x2+2x).(2x+1)2+(x3+ x2-1)2.( 8x+4)
Dạng 5: Đạo hàm và các bài toán giải phương trình, bất phương trình
Bài tập 13. Cho hàm số y= 2x3 – 6x2+ 2000. Phương trình y’= 0 có mấy nghiệm?
A. 0
B. 1
C. 2
D. 3
Giải
+ Ta có đạo hàm: y’=6x2-12x
+ Để y’=0 thì 6x2-12x=0
Vậy phương trình y’= 0 có hai nghiệm.
Chọn C.
Bài tập 14. Cho hàm số y= x4+ 2x3 – k.x2+ x- 10. Tìm k để phương trình y’=1 có một nghiệm là x= 1?
A. k= 5
B. k= -5
C. k= 2
D. k= – 3
Giải
+ Ta có đạo hàm: y’= 4x3+ 6x2 – 2kx+ 1.
+ Để y’= 1 thì 4x3+ 6x2 – 2kx+ 1 = 1
⇔ 4x3+ 6x2 – 2kx = 0. (*)
Do phương trình y’= 1 có một nghiệm là x= 1 nên phương trình (*) có một nghiệm x= 1. Suy ra: 4.13 + 6.12 – 2.k.1= 0 ⇔ 10- 2k = 0
⇔ k= 5.
Bài tập 15. Cho hàm số y= 2mx – mx3. Với những giá trị nào của m để x= -1 là nghiệm của bất phương trình y" – 1
B. m 2
Bất phương trình y’ 2 2 - 1.
Chọn A.
Dạng 6: Tính đạo hàm tại 1 điểm
Bài tập 16. Cho hàm số y= x3+ 2x2 – 2x+ 10. Tính đạo hàm của hàm số tại x= 1
A. 5
B. – 2
C. 7
D. 10
Giải
Đạo hàm của hàm số đã cho là : y’= 3x2 +4x- 2
⇒ Đạo hàm của hàm số tại điểm x=1 là y’ ( 1)= 3. 12+ 4.1- 2= 5
Chọn A.
Bài tập 17. Cho hàm số y= 16√x+2x- x2. Tính đạo hàm của hàm số tại x= 4.
A. – 1
B. – 2
C. 0
D. 2
Giải
Tại các điểm x > 0 thì hàm số đã cho có đạo hàm và y’= 8/√x+2-2x
⇒ Đạo hàm của hàm số đã cho tại x= 4 là : y’ ( 4)= 8/√4+2-2.4= -2
Chọn B.
Bài tập 18. Cho hàm số y= ( 2x+ x2)2. Tính đạo hàm của hàm số tại x= – 1?
A. 0
B. 2
C. – 2
D .4
Giải
Hàm số đã cho xác định với mọi x.
Đạo hàm của hàm số đã cho là:
y’=2( 2x+ x2 )( 2x+ x2 )’ = 2( 2x+ x2 )( 2+2x)
⇒Đạo hàm của hàm số tại x= -1 là y’( – 1) = 0.
Xem thêm: Quy Đồng Mẫu Thức Nhiều Phân Thức Nhiều Phân Thức, Quy Đồng Mẫu Thức Nhiều Phân Thức
Chọn A.
Dạng 7: Đạo hàm và bài toán giải phương trình, bất phương trình lượng giác
Bài tập 19. Cho hàm số: y= sinx+ cosx. Tìm nghiệm của phương trình y’=0